
FINAL REPORT

N.A.S.A. Grant NGR-47-006-050

PRECISE MEASUREMENT OF CHARGED DEFECTS IN III-V COMPOUNDS (2)

Reproduced by 

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
'~~-~ ~ Springfield, VA. 22151

April 28, 1972

(NASA-CR-112 2 2 4) PRCISEMSURENT OF ·
~CHARED DFECTS PRECTSL"MEASUEMEN Ov.N73-1778ECHARGED DEFECTS IN III-YV COMPOUNDS. (2)

Final Report t(College...of William and
Mary) 23 p CS.L . Un..

CSC-L 20L...
[Unclas''

.......... -_ .. .G3/26 62033

Report prepared by

J.FSoest (Principal Investigator)

3:,



Introduction

The main objective of this research is to obtain a calibration

of a low concentration of charged defects in some III-V semiconducting

compounds. The experimental technique being used is nuclear magnetic

/

resonance (NMR), and the objective is to be attained through a thorough

examination of the properties of the NMR lines of the nuclei in the III-V

compounds.

Understanding the properties of the NMR lines, and how they are

influenced by the presence of charged defects, requires both theoretical

and experimental exploration. This report is thus divided into three sec-

tions: I. Theory, II. Experiment,and III. Conclusions.
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I. THEORY

The sensitivity to defects achieved in this work will depend on a

detailed knowledge of the magnetic resonance line shape. The best calculation

(1)
of the magnetic resonance line shape in solids was done by Lowe and Norberg( ).

(2)
However Abragam( ) has proposed a two parameter shape function that reproduces

the observed shapes as well as the Lowe-Norberg theory and is much simpler in

form. More recently Betsuyaku(
3 ) has extended the Lowe-Norberg calculation to

include higher order terms in their expansion. This extension removes the agree-

ment between the theory and experiment. Thus this fundamental problem remains

in unsatisfactory shape.

A new approach to the problem is needed. It is suggested that a

combination of "single site approximations" and the "coherent potential approxi-

mation" ( 4 ) may prove useful.

In order to apply the methods suggested above, a knowledge of the

normal modes, or at least a set of almost normal modes, of the spin system is

needed. A preliminary and still incomplete study of these modes is described

below.

The secular part of the dipole-dipole Hamiltonian coupling a

system of identical spins is

<=gSI've-Z(- .AW' - 3b..)=Ic2

Jhere a) i, ~ -& i (1 

where - 3 2
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y is the magnetogyric ratio for the spins,

is Planck's constant,

is the lattice vector designating a nuclear position,

Cos E
1o is the external d.c. magnetic field,

|is the spin operator of the I nucleus, and

U - (2)

The objective is to find a normal modes transformation that diagonalizes

this Hamiltonian.

Try the transformation

r1 -' AUk g e e - ~,(3)

where N is the number of spins in the system, including periodic boundary

conditions, is a reciprocal lattice vector which ranges over the first

Brillouin zone, and P is a polarization index which takes on three possi-

ble values. As the calculation proceeds it will become obvious how 

and a are to be found.

Substitute Eq. (3) into Eq. (1). Then one finds

-w , · t, t ee, ° (4)A
~~3 c1~, 5 '~~ e (4)
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where

LA (r) _= Y Ai- r t01- .1~/_ e
-~~~ 1'I

Choose the e, , to be the eigenvalues of the diadic i.e.,

Since A ((') - (-4), we know that e ,, ,_, , and

CO,,= * A ,is a diagonal diadic, hence its eigenvalues

and eigenvectors are trivial to find. This general formalism is presented in

case it ever becomes useful to use this method on more complex spin Hamiltoni-

ans, e.g. the full dipole-dipole interaction. The eigenvectors of A () are

and t h co r ep-- o i a Ar A 

e s po nd P i x) gevau ar

and the corresponding eigenvalues are

(6)

fi =pl ~I i = ae et(ax 

- t- __ (l-__________.;20 ; I 3 D~

- ~ ~ i ~ j ( 1 3 C o s 2 9 ) e ; ./

with COSNz = 'H . Note that WOX= 0 for a crystal with

center of symmetry. However we shall see that Wt X is almost dis

near k -o and, fork - /3 WAi is not small. An approxi:

expression for G kX is developed in Appendix I.

(7)

&W5(Zt),

a

continuous

mate

(5)

= (A(-r ) .
01..
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Now return to the diagonalization of 9 . Inserting Eqs. (5) and

(6) into Eq. (4) converts it to the form

The sum over X. is

and /Then, sinceand %. Then, since

A A~~ I 4'i. (7V | Z1)

z. elr e = zt - , a Kronecker delta of

I · = Ad ,' , the X becomesO ~((6

(9)Pta= ;ale bil jre are -r *

Since 7 is a Hermitean operator, Eq. (3) gives us

.I -;te- r
t 'M ev e '/ t eth(022~~~~e(lo)

where the last equality is reached by substituting - for everywhere

in the term on the left and using the fact that e., The

equality of the last two terms in Eq. (10) implies that

-2 re (11)

since the expressions must hold for arbitrary 2

to write Eq. (9) in the form

Eq. (11) can be used

A 3 i (12 %9 I t) .

(8)

.I- -?

(12)
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In order to complete this discussion, we now examine the commuta-

tion relations among the %$

transform of Eq. (3) yields

and operators.and qp operators. First the inverse

-i (13)e (13)

Then the commutator between 1-t p and •,rl Iis

A , IAI( 3 ) A(

W

'e]

-i (r. I 4 . )
e

)

)

Examine the special cases

(15)
1tA ) ir03 =. 0)

[jrX ) jt'c] -4T
= N 

~i It[).e -. -

_~~~~NN

)

but

Ifs._~ I-it
c1h -V

so

[c'3

)14 3

~i (t +(/) )0 (14 )

g+r ? (16)

(17)

(18)

-"O k._
, F

· I S, t 1
P 3 -,1E-61

E "O * ))Ito ulI --- NX

( ) pi = , M , J 

I t tX

_ Itv

l~rt ) rt~z I=

llt- ) %ttx] = jt+t'D
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Similarly, one finds

[aceWe ,&= o0 (19)

) % %t j _ g %t If Z ) (20)

['c,] B By °)(21)
Ito~~~~~~~~~~~~~~~~~~~~,

i -t t , (22)

plus cyclic permutations of Eqs. (20) and (22).

Using Eq. (19), Eq. (12) can be rewritten in a familiar form:

Ed'V d ty we %tp ' ~~~~(23)

Although this Hamiltonian is written as a sum of one "particle"

operators, the operators corresponding to different polarizations 3 do

not commute. Hence the Hamiltonian is not yet diagonal. Operators for

different r but the same polarization do commute. There are a few other

commutation relations and theorems which can be derived, but so far we have

been unable to find another transformation that completes the diagonalization

of the Hamiltonian.

For example, the net magnetization can be expressed in terms

of the as

(24)
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Other commutation relations that prove to be useful are (in these expressions

the arrow is left off the vectors it , / ):

-

t x I ky ) IL' ? 

4- 6 "x cI +L',Ij )

-t
-1.

1

(25)

(26)

(27)

(28)

le Le. fk1 ' (Et (29)

+ L 4 ,
- t

-4

I te k',t 6 

(6Rt, q ~ Lat 4t a (30)
Vk L_ V X' L + LIE 1j ie k b x

4- q kvIkj IV + V

From Eqs. (25), (26), and the fact that

is easy to show that

,W = O

or equivalently from Eq. (24)

[AI)X ] o

° ks - CA k --1 i , it

(31)

(32)

UQ-V' )x

[jtx jkx, ) I k/

(I sk, X $ JLkt %L-k I L1)

lj t)tE ( t- + Tk ALK')

[lo ' )
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Eq. (32) is not too surprising since that is the condition used to pick the

secular part of the full dipole-dipole Hamiltonian.

If X can be completely diagonalized then the Lowe-Norberg pro-

blem can be solved exactly. However, since this Hamiltonian is a generaliza-

tion of the Ising model which has yet to be solved, it seems unlikely that we

shall succeed. It does seem worth a bit more effort. The fact that the

commutation relations, Eqs. (15)-(22), involve a J/1 factor may prove to

be useful in some expansions. However care must be used since some 

may be of order 14 . For example, for a system of spin 1/2 particles in

the ferromagnetic state with all spins up it >

the E O matrix element is large while all the others are zero. For states

with nearly random spin orientations, the matrix elements of the O ~S

are probably mostly of order I/,- , but this hasn't been proven.

A good deal remains to be done on this subject so this work will

continue. We shall also try to extend these ideas to help analyze the Waugh( 4 )

type experiments.



II. EXPERIMENT

E. H. Rhoderick has investigated the nuclear magnetic resonance of

doped and undoped indium antimonide and gallium arsenide.5 He found that the

intensity of the resonance absorption derivative decreased with increasing con-

centrations of impurity. In fact, his data show a sharp decrease in the inten-

sity of the resonance as the impurity concentration increases up to 1018 cm-3.

Conentatonslarertha 118 -3
Concentrations larger than 10 cm3 serve to further reduce the intensity, but

at a much slower rate.

The explanation for this behavior is as follows. In the pure com-

pound the resonance line is broadened significantly mostly by the magnetic

dipole-dipole interaction. The resonance line in a perfect crystal is not

broadened by the quadrupole interaction because the lattice has cubic symmetry

and each atomic site has zero electric field gradient. An impurity destroys the

cubic symmetry in its neighborhood, and broadens the resonance line through the

quadrupole interaction. Since the quadrupole moments of each of these nuclei

are large, the satellite transitions (3/2-~1/2, etc.) are split far from the

resonance line and do not contribute to the detected resonance. The initial

sharp decrease in intensity is thus due to the loss of the satellites from the

resonance line. The gradual decrease in intensity observed by increasing impurity

conenraion geaer ha 118 -3
concentrations greater than 10 cm3 is due to a broadening of the central com-

ponent (the 1/2 -'i1/2 transition) by the quadrupole interaction. This broadening

is always present, but its effect can be distinguished only when the central

component alone is detected.

Among the other conclusions that Rhoderick draws from his data is that

the antishielding factor necessary to explain the sharp decrease in intensity

3is very large, on the order of 10. We have used Rhoderick's data to make anis very large, on the order of 10 . We have used Rhoderick's data to make an

-9-
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independent calculation of the strength of the quadrupole interaction, and we

find that it is 2000 times stronger than predicted by a simple point charge

defect model.

Our calculation consists of assuming that the impurity atom will assume

a net charge at its lattice site of re , where Y is a dimensionless parameter
describing the strength of the interaction. This produces an electric field

gradient at the sites of nearby nuclei. In particular, a nucleus a distance r

away from the impurity will have satellite lines shifted by an amount

( ;hr3 (cs6l(a3

where C is the dielectric constant, e Q is the electric quadrupole moment of

the nucleus, and 9 is the angle between the vector from the impurity to the

nucleus and the static magnetic field direction. If f is small, the satellite
s

shift will serve only to-broaden the resonance line; but a large f corresponds
s

to loss of the satellite components of the resonance. In this calculation of

the strength of the quadrupole interaction we choose a frequency f such that if

f < f for a given nucleus, then we may still see its satellite contributions;
s

but if f > f, it will be split far enough that we cannot detect it.
5

In order to calculate the total number of nuclei that contribute only

the (-1/2--1/2) component to the resonance line we need to calculate the volume

69
about each impurity in which f 2 f for every Ga 9 atom. This volume is found

s

to be

/ y tet /Z)( 43)'I- -27 '4

Then the number of nuclei within the volume is N = n V, where n is the atomic

density of Ga9 0 Since, as we shall seethis interaction is very strong0 then
density of G Since, as we shall see,this interaction is very strong, then
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the volume V is large and we are justified in using a continuum model for the

lattice.

The intensity of the resonance line is proportional to the density of

Ga69 atoms, n , within the specimen; but the intensity of the resonance when
0

all the satellites are shifted beyond detection must be proportional to .4 n 
0

If the interpretation of the intensity behavior is correct, then the linear de-

crease of intensity with increasing impurity concentration should extrapolate

back at zero concentration to the intensity of an unbroadened central component,

which is .4n . Actually, Rhoderick's data extrapolate back to .6 of initial in-
0

tensity, indicating that in his "pure" crystal not all the satellites were present.

Let n' represent the atomic density which at zero impurity concentration contri-

butes only the central component. Then with zero impurity concentration the in-

tensity may be written

where K is the normalization constant. Rhoderick normalizes this intensity to

unity. The extrapolation to zero concentration yields

.,=S .6 K(nq-. S' ) = ,"lKro K

or

n^.Gn' 3n ,aynd K =znON~~~~~

Rhoderick's "pure" sample contained only 4/9 of the satellites. We can now write

the intensity of the resonance at a given impurity concentration, C,

3: n. CI Y= 0(tx -A -.(or'?QVO)

and by differentiation, 2f3
dT I ___s\W )X (5 

We use the value of d/C from Rhoderick's data and the value of 3 KHz

for fs, which is half the total width of the Ga9 resonance line, and obtain the
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result X = 2000. Since the impurities used by Rhoderick were one electron

donors or acceptors, we are reasonably confident that the effective charge

at the impurity site is nearly + e. Thus the effective strength of the

quadrupole interaction is a factor of 2000 larger than predicted by this

calculation for a point charge in a continuous dielectric medium.

We have made preliminary measurements on a GaAs sample that show

qualitatively the same results as Rhoderick. In our case, however, we

have induced vacancies in the sample by thermal damage - heating the sample

to about 700°C, then rapidly quenching it to about room temperature. These

vacancies then act as charge centers and create electric field gradients

like impurities. We have observed both a decrease in NMR signal intensity

and a change in NMR linewidth.

The decrease in signal is shown in Fig. 1 for the one sample ob-

served so far. There is an orientation dependence of the signal intensity,

which appears to be preserved even after the damage. Whether or not this

is a real effect cannot be determined yet,since these numbers were obtained

by measuring the peak-to-peak height of the derivative of the absorption

curve, X. We use this number here because Rhoderick did, and we were

interested in comparison with his data. However, this measurement does

not accurately describe the changes in X as impurities are introduced

into the lattice, for if % changes shape as well as intensity the single

measurement of w- might well lead to an incorrect interpretation of

the number of nuclei contributing to the resonance.

We feel that it is incorrect to attribute the enhanced quadrupole

effects caused by lattice defects - either impurities or vacancies - to

the ordinary antishielding action of the electrons. In fact there is some
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indication that another process is involved, which is not totally under-

stood, and which may not have been seen by Rhoderick. In Rhoderick's

"pure" samples he found no line width change as a function of orientation

in the magnetic field, and he explains this isotropic broadening using the

pseudo-exchange interaction, in which the nuclei interact with each other

through electrons.

(6)
R. K. Sundfors has used NMR and nuclear acoustic resonance

techniques to isolate broadening mechanisms in III-V compounds. Unlike

69
Rhoderick he finds a dependence of the Ga 9 second moment upon crystal

orientation in the magnetic field. He attributes this to quadrupole

broadening caused by a small random electric field gradient present in

the lattice. We find the same angular dependence in an undoped specimen

with 105 fewer charge carriers than Sundfors'. We feel that fewer charge

carriers implies fewer substitutional impurities, which should cause much

less broadening due to random electric field gradients. When damage is

caused by thermal shock we find that the linewidth decreases in addition

to the loss of intensity. These line width data are shown in Fig. 2. This

behavior indicates that spin-spin relaxation is partially inhibited when

the quadrupolar satellite shift occurs. Thus the sharp decrease in "in-

tensity" (as defined by Rhoderick) may well not be entirely due to anti-

shielding.

Some of these data were presented in an oral report at an American

Physical Society meeting,( 7 ) and the abstract for that report is included

here as Appendix II.

The best way to monitor intensity is to integrate over the ab-

sorption curve XI, but there is a difficulty in that a low signal to
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noise ratio in the extreme wings of the resonance causes very large experi-

mental error. In order to make such measurements accurately, one must use

signal averaging techniques. Much of the work of this past year has been

devoted to purchasing and building the components of a system to do this.

The system consists of an analog-to-digital converter, a small computer,

and the interfacing required to make the various parts of the experiment

work together. The signal averaging system is nearly complete, and is

expected to be operating about June 1, 1972.

A pulsed NMR spectrometer has been completed and is now operating.

This apparatus will assist in careful line shape and intensity measurements,

and as well allow the application of the Waugh pulse techniques(
4

) to the

problem.



III. CONCLUSIONS

Substantial progress has been made in preparation for the experi-

mental and theoretical research on the main objective of this contract.

The preliminary investigations have already found new and interesting re-

sults, some of which are being published. The sensitivity to thermally

induced vacancies that we have found supports our hypothesis that we will

be able to calibrate low concentrations of charged defects. A quantitative

evaluation of the ultimate sensitivity of this technique must await more

detailed studies of the NMR line shape and intensity. This phase of the

experimental program will soon be aided considerably by the recently acquired

signal averaging system.

It was hoped that the signal averaging system would be completed

by the time of this report. The major component of that system is the small

digital computer, for which an order was first place in late July, 1971.

However, the order was held up by the Division of Automatic Data Processing

under the Virginia Governor's office until November 18, 1971. This delay

was purportedly to coordinate our purchase with state acquisition of other

computers, although this federally-funded research project was not intended

to be coordinated with other state computers or research projects. The

outcome of this is a delay of approximately four months in beginning our

full effort in taking data.

Some of the theoretical research done this past summer was carried

out by A. Sher at the Aspen Summer Institute for Physics in Aspen, Colorado.

This was done with the knowledge and consent of both the principal investi-

gator and the technical officer of this contract.

- 15 -
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Appendix I

To gain some idea of the behavior of C)a , convert the sum over

to an integral from -= to = oo . If the upper limit on X

is taken to be the size of the sample - Nq, then (0
O

is zero; if X=_o

is used, then C0ox is finite. Since this is a single point in k-space,

it doesn't contribute much to integrals over Z which will arise later in

the theory; so practically no error is introduced. Also assume that the

radial distribution function is uniform and equals '/C3 ,i.e., this is a

first approximation to a simple cubic lattice.

YM
Denote a spherical harmonic by YL () , where L is the angular

momentum, M the e component of the angular momentum, and f ij ¢ .

The second spherical harmonic Y.z ()is

I/

y ) (. ) = c---'f-(3coS29 Z 1. (A-1)

The function e_ can be expanded in spherical harmonics as

e z4(X )L L(k*'L) -Q 1J () (A-2)
LJ)1

where J (x) is a Bessel function of order V with argument X

Using Eqs. (A-1) and (A-2), and converting the sum in Eq. (7) to an integral

- J i3 dL = J 4a d dQ. ,the expression for WVx
becomes

S2 T 24 r (fk2ti (RL
LM L(A-3)

X > L 1 A (k i (LI) |dQYL 2( (
171

- 18 -
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But the integral is

JjanY, (L

and when this is inserted into Eq. (A-3), it reduces to

hengaiEq. (-4)zoeT(T .e2a

The integral in Eq. (A-4) over L equals

J3 x) L.r , CoS Xl

- - J )

(A-4)

3 /2z

so Eq. (A-4) can be s

and

implified to

.4) = ,z ' (1 - 3 cos- e)
tx ~~aS

The frequency dispersion has the form

Lu

cos(k) 1
(ke) I j

___,z: / t(3- scose k)

=LZ S0 )

(A-5)

= (L /

s(kL)



Appendix II

Abstract Submitted

for the Atlantic City Meeting of the

American Physical Society

March 27-3,0, 1972

Published in: Bull. Am. Phys. Soc. 17, 332 (1972).

Physical Review Bulletin Subject Heading
Analytic Subject Index in which Paper should be placed
Number 21.4 Nuclear M4acrnetic Resonemce

Antishieldin- -actor From Gallitm Arseoide Yv.x .
R. HESTER, A. SH2, J. F. SOST, Colle:e of Wi!li-m and
Mar--Using the data of E. H. Rhoderickl. on the intensity
variation c.f the GaO9 ,EMR absorption derivative line
with a change in the Te concentration of Te-doped GaAs,
we calculate an effective antishielding factor on the
order of 1000. This leads us to believe that the Ga® 9

resonance can be sensitive enough to detect defect con-
centrations in undoped GaAs possibly as small as 1014-
l1015 cm-3 . Preliminary data taken by cw N~JM have shown
qualitatively the same results as Rhoderick has presented.
The creation of defects by thermal d'-magc, in the same
manner as H. R. Potts and G. L. Pear--son2 , lo-.rer-s the in-
tensity of the resonance line, and in addition, causes a
line narrow¢ing. This line narrowing may be the result of
a partial quenching of one or more of the spin-spin
interactions.

*Supported in oart by N-ASA.
1E. H. Rhoderick, J.. Phys. Chem. Sol. 8, 498 (1958).
2H. R. Potts and G. L. Pearson, J. Appl. Phys. 47, 2098
(1966).
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